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Positive Lyapunov Exponents 
in the Kramers Oscillator 

L. S c h i m a n s k y - G e i e r  ~' 2 and H.  Herze l  2 

The maximum Lyapunov exponent is computed numerically for the double-well 
oscillator in a heat bath. Positive exponents are found in a wide range of friction 
coefficients in the low-damping regime. 
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1. I N T R O D U C T I O N  

The paper is devoted to the effect of noise on the celebrated double-well- 
oscillator which is the standard model for studying thermal activation 
between two stable states (Kramers problem). (1' 2) 

The concept of Lyapunov exponents is applied to the model. In the 
framework of a linear stability analysis, Lyapunov exponents measure the 
mean stability properties of orbits. These exponents play an essential role 
in the theory of deterministic chaos. In deterministic systems Lyapunov 
exponents may be regarded as a definition of chaos, and they are intimately 
related to attractor dimensions and the Kolmogorov entropy. (3~ Lyapunov 
exponents can be understood as weighted sums of unstable and stable 
motions. Since noise may influence the corresponding weights, it will lead 
to nontrivial behavior (g, 5) as demonstrated below. 

Several investigations have reported positive Lyapunov exponents 
for stochastic discrete maps and complex nonlinear systems. ~5-14) It has 
been shown that small noise may destabilize periodic orbits, leading to 
seemingly chaotic behavior. (5-1~ In these cases we have deterministically a 
chaotic repeller (termed also a chaotic transient) and a periodic attractor. 
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Since the transients are more robust against fluctuations, the noisy 
trajectories resemble truly chaotic orbits at adjacent parameter values. 
These effects might be termed "noise-induced chaos" since the resulting 
dynamics exhibits many features of chaos. We will claim that positive 
Lyapunov exponents in the Kramers oscillator have a different meaning. 
Otherwise it is worth mentioning that fluctuations may stabilize chaotic 
dynamics/11 13) In these cases noise strengthens the regular aspects of the 
dynamics. 

The new point is the investigation of Lyapunov exponents in a non- 
linear oscillator which is well investigated and physically well understood. 
The double-well oscillator is characterized by stable regions near the 
bottoms of the potential valleys and unstable dynamics in the vicinity of 
the saddle point and its separatrix. Consequently, averaging over the local 
divergence rate may lead to positive Lyapunov exponents, which means 
that the dynamics on average is diverging. We have found numerically 
positive values in the low-damping regime and will give an interpretation 
of this observation in the discussion. Therefore, the Kramers oscillator 
could serve also as a standard example for the investigation of the meaning 
of positive Lyapunov exponents in stochastic systems. 

2. L Y A P U N O V  E X P O N E N T S  

We study the bistable oscillator proposed by Kramers (1) 

9r = X2 

dU 
"~2 = - -  ~X2 - -  ldX-- 3ff (2e~)1/2 ~(t) 

with 

and 

(~( t ) )  =0, (~(t)~(t'))=6(t--t') 

a b 4 
U ( X l  ) = _ 2 x 2  .-~ 4 X l  

(2.1) 

(2.2) 

P(Xl, X2)=N_lexp{ l[-x 2 + (2.4) 

These equations describe the stochastic motion within a bistable potential. 
The model was proposed by Kramers (1) to study rate coefficient of 
chemical reactions. The noise is scaled in such a way that e stands for the 
temperature of a heat bath. Hence, the stationary probability distribution 
density does not depend on the friction coefficient 7- The stationary density 
is just the canonical distribution 

(a, b >0)  (2.3) 
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To characterize the dynamics of the trajectories, usually the mean transi- 
tion rates between the valleys are investigated. This concept, introduced by 
Kramers, ~ was studied extensively and several approximative representa- 
tions for arbitrary 7 were given. (2) We point out that positive Lyapunov 
exponents will be found in the low-damping regime where the Kramers rate 
is increasing linearly with the friction coefficient. 

This Lyapunov exponent as an additional characterization of the 
dynamics will be introduced now. In order to analyze the stability proper- 
ties of orbits, we compute the evolution of infinitesimal deviations q from 
the stochastic trajectories x(t). The vector q is governed by the linearized 
version of Eq. (2.1): 

q l  = q 2  

_Fu  
q2= --'~q2 \ dx 2/ ql 

(2.5) 

Equations (2.1) and (2.5) constitute a coupled system of stochastic equa- 
tions, since the second derivative of U(xl) depends on the coordinate xl. 
Equation (2.1) describes the motion in phase space, whereas Eq. (2.5) 
describes the evolution of perturbations q in tangent space. 

It can be verified that the norm of the deviation q obeys 

d qiJij(x)qj 
dt Itq[I- I I ~  ]lql] =L(x, q)Ilq]l (2.6) 

where J~(x) is the Jacobian of the considered dynamical system. Integrating 
formally Eq. (2.6) gives 

IIq(t)ll= llq(O)ll exp {ff L(x, q)dt'} (2.7) 

The quantity L(x, q) is the local divergence rate depending on the phase 
space coordinates Xx and Xz and also on the direction of the perturbation q. 

The maximum Lyapunov exponent will be obtained as the long-time 
average of the local divergence rate, (< 87 i.e., 

,t,= limo }fo'L(x, q)dC= lim lln,J']lq(t)'l'~ (2.8) 
- , - ~  t ( l l q ( 0 ) l r J  

If ergodicity is assumed, the long-time average in Eq. (2.8) might be 
replaced by an average over a stationary probability distribution density. 
However, the canonical distribution in Eq. (2.4) is not sufficient, since the 
value of the rate L(x, q) depends also on the direction of the deviation q, 
hence, the joint density of x and the angle of q will be necessary for an 
analytical calculation of 2i. 
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Since this density is unknown, we estimate the Lyapunov exponent 
numerically via long runs of the stochastic trajectory. The local divergence 
rate L(x, q) is interpreted as a stochastic variable depending on the actual 
samples generated by Eqs. (2.1) and (2.5). Therefore, Eq. (2.8) represents 
the time average over a stochastic variable. 

Results are shown in Fig. 1 for two different values of the noise inten- 
sity as a function of the friction coefficient. Every point represents the mean 
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Fig. 1. M a x i m u m  L y a p u n o v  exponen t  in the K r a m e r s  oscillator versus  friction coefficient. 
The  a r row indicates the value of the barrier  frequency, a =  10, b = 100, and  (a) e =  1, 
(b) e = 0.3. 
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local divergence rate of runs with 500 transitions between the two valleys 
which were averaged over 50 initial conditions. For both noise intensities 
the second moment (A.~2) obtained from the ensemble of initial conditions 
is of the order 10 -4. Thus we obtained positive values of 21 over a wide 
range of friction coefficients. For  the results shown we have 7 < c~ = a 1/2, 
where cob is the barrier frequency of U(x) and, therefore, we found 21 > 0 
in the low-damping regime. 

3. D I S C U S S I O N  

In deterministic systems a positive Lyapunov exponent may serve as a 
definition of chaos. In our system of consideration, however, the terminus 
"chaos" seems to be not appropriate, since no other features of chaotic 
dynamics, such as strange attractors or homoclinic orbits, are present. 

However, even though our observation of a positive Lyapunov 
exponent should not be termed chaos, the quantity 21 is of considerable 
relevance for the characterization of the dynamics. There is a vast mathe- 
matical literature of Lyapunov exponents in various stochastic system (see, 
e.g., Arnold and Wikstiitz (14~ and references therein). 

The origin of a positive Lyapunov exponent can be understood from 
inspection of Fig. 2. Oscillations within a valley are compatible with a 
linear decrease of In ]]q]] with a slope of about - ' / /2,  which is just the 

x 

,~ n IIqll 

Fig. 2. Realization of the process (2.1) and the corresponding evolution of In IIq(t)ll. Note 
the decrease of ]lqll during the motion within the potential valleys and the increase during 
transitions. The slope of the dashed line gives the Lyapunov exponent 21. (Adapted from 
Herzel eta/. (8)) 
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real part of the eigenvalue of the Jacobian in the stable foci. In contrast, 
transitions to the other valley are accompanied by an increase of In Ilqll. 

We note that the separatrix in the low-damping regime twirls several 
times around the saddle point (see Fig. 8 in ref. 2) and the stable loci in 
a region with finite values of probability. Therefore, during the transition 
the trajectory crosses several times the separatrix and spends a lot of time 
in this instable region. 

The superposition of these regimes, unstable and stable ones, leads to 
a mean exponential increase of Ilq]l which corresponds to a positive expo- 
nent 21. This accumulation of instability can be interpreted as a succession 
of coin tossing to choose one of the two valleys. That means that the 
crossing of the separatrix by noise is the essential mechanism to get a 
positive exponent. 

Obviously, even if a positive Lyapunov exponent cannot be identified 
with chaos, the fact itself contains additional information on the dynamics 
of the Kramers oscillator. In order to understand the implications of a 
positive exponent, we discuss the dynamics of a cloud of initially nearby 
points. The separation of these points due to noise is a diffusionlike process 
with a power-law growth of distances. In contrast, a positive Lyapunov 
exponent implies that there is an exponential separation of orbits in one 
direction. The cloud of points will be stretched out exponentially. It is a 
question of time scales whether or not exponential separation dominates 
over the diffusive separation. It was shown in Ebeling e t  al. ~15) that for 
small time scales a diffusion law was applicable, whereas on a large time 
scale nearby orbits separate exponentially. In other words, a positive 
Lyapunov exponent indicates a "mixing flow" of the stochastic trajectories 
which is not reflected by the stationary probability distribution density and 
the mean transition rates. 
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